OPERATIONAL CALCULUS FOR FUNCTIONS OF TWO
INTEGER VARIABLES WITH SOME APPLICATIONS

V. A, Ditkin and A, P, Prudnikov UDC 519.47

Operational calculus theory is developed for functions of two integer variables and applica-
tions given for solving some problems of discrete analysis.,

The theory is developed in the present work for an operational calculus for functions of two integer
variables; it is based on a discrete analog of the convolution that corresponds to the multiplication opera-
tion, Convolutions of similar type were previously considered in [1, 2]. Some new results are obtained.

Let S be the set of all either complex or real functions f(x, y) of two integer variables x and y which
can assume all nonnegative integer values, The functions are denoted by either f(x, y}, g%, ¥), ... OT
Ay s bvps«o.s where x, y, v, u denote nonnegative integers, The set S is linear as regards standard
operations of addition of functions and of multiplication by a number., The multiplication operation is now
introduced in S.

Definition 1. The product of the functions f(x, y) €S and g(x, y) €S is called a function h(x, y) defined
as follows:
a) £ (0, 0)=7(0, 0) g0, 0
b) A (x, 0) = Zi‘(x——V 0) g, 0)—2 fx—1—v, 0) g(v, 0),

v=0 v=0

x=1,2 3, ...;

¢) 1(0, y) = 2 FO, 9—wg©, w— Ef(O, y—1=wg O, w)
=0

y=17 2’ 37 b
X ¥ x—1 y
d) h(x, y)=§0 MZ‘O fx—v, y—mw g, u)——vEO HZ‘O fx—1—v, y—pw) g, w
x  y—l x—1 y—1
—V V fx—wv, y—1l—m g, MH-E Ef(x—l——v y—1—w g, p),
v~0 u~0 v=0 p=0
x=123, ...;9y=1,2,3, ....

This product will be denoted by using the symbol "%", Thus
Flr, ) v gz, 5)=hix, y). @
The basic properties of this product are as follows,

1. The product has the commutative and associative property and also the distributive property with
respect to addition,

2, If f(x,y) =c where c is constant then cx g(x, y) = cg&x, y).

3, If f(x, y) depends only on x, that is, f(x, y) = f(x) and g(x, y) depends only on y, that is, g(x,y) = g(y)
then f(x, y) * g(x, y) = fx)g(y), that ig, the product in this case is identical with the ordinary product
of functions. This property follows directly from the definition,
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The following can easily be shown,

4, If f(x, y) = f(x) and g(x, y) €S is an arbitrary function then the product {x) * g(x, y) = h(x, y) is such
that
RO, ) =10 g0, y); y=0, 1,2, ...,

x—1

hi, )= N =g, o) — X Tx—T1—=v) g, y)

v=0 v=0

x=1,23...; y=0,1,2, ...

In a particular case the latter equality implies that

I 0 for x=0;9=0,1,2, ...,
x=gx, y) =] 2}
lzg(v!y) for x:172’ 3?"';y:0, 1,2,...
v=0
Similarly,
f 0 for y=0; x=0,1,2, ...,
y#=gx, y) = ly
lzg(x, W ofor y=1,2,3 ...;x6=0,1,2..
=0
and
x—1 y—I1

E zog(v, W ofor x>1,y>»1,

Xy = g (¥, §) = |v=0 =
0 otherwise.

If into the set S one introduces side by side with ordinary addition of functions the product introduced in ac~
cordance with the formula (1) then S becomes a commutative ring, This ring has no divisors of zero {1, 2].
The extension of the ring S to the field of ratios is denoted by R(S), its elements being called operators, In
particular, the operators 1/x and 1/y are elements of the field R(S). The notation ¢ =1/x, 7=1/y is in~
troduced, It will now be explained what condition must be satisfied by f(x, y) € S so that the product ¢ *f(x,

y) is also an element of S. Let g *f(x, y) = h(x, y) €S then f(x, y) =1/0¢ *h{x, y) =x*h(x, y). Hence it fol~-

lows [see (2)] that f(0, y) =0 fory =0,1,2,...; conversely, if this condition is satisfied then

x—1
fo, 9= ¥ 1o +1L 9 —[@ 9

V=0
x—1

By setting f(v + 1, y)~f(v, y) = h(v, y) one obtains f(x, y) = 2 h(v,y). Therefore f(x, y) =x+*hx, y), and
v=0
hence h(x, y) = 0 xfx, v) €S. One concludes similarly that the product 7 xf(x, y) is an element of S only if
fx,0=0forx=0,1,2,...
Thus the following theorem is valid.

THEOREM 1. For the product ¢ *f(x, y) to be an element of the set S, £(0, y) = 0 for all y is a neces~
sary and sufficient condition., In exactly the same way the condition f(x, 0) = 0 for all x is necessary and
sufficient so that 7 xf(x, y) €S,

Let us denote

fe+1, 9 —F@x » =477 9, 3)

Fo, g+ —F & 9 = A& 9, 4)
Then

o= [f(x, ) —F0, YI=2477(x, 9), )

T f(x, 9 —F @ Ol =Af(x, ). (6)

1t follows from (3)~(6)
ot [f(x, y) —[(x, 00— [0, ») + (0, O)] = AN, f(x, ).
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If fx, 0) =f(0,y) =0for all x =0,y = 0 then o7 *f(x, y) = AxAyf(x, y). One finds from (5) that
G * [Axf(x7 y) -—Axf (O’ y)] = Aif(x, y),
and hence by again using (5) one obtains
U{G lf (x’ y) _f(ox y)] —Ao,i(07 y)} = A;ng(x, y),
or

A)ch(x: y) = 02f (x) y) _sz (0’ y) _GAxi(()’ y) <‘7)

Similarly,
AJF(x, ) =T (x, ) —f(x, 0) —7A,f(x, 0). ®)
It follows from the relations (7) and (8) that
(A?v + Az)f(x: .1/) = (02 + TZ) f(x» y) - 02f (Or y) —Tzf (}C, 0) — O‘Amf (0: y) —TAyf (xr O)

Let
W =x(x—1)(x—2) ... x—n+1), x@=1,

ym =yy—D)y—2) ... g—m+1), y@ =1

Since Agx(™ = nx®@ =1 then in view of x(® |4, = 0 for n > 0, one finds from (5) that gx () = Axx® = nx(®=1),
hence ¢Mx ™ =n! or 1/oR =xMm)/n!, It is obvious that 1/rm = y(Mm)/m!,

Definition 2. Let

I, x>m, y>n,
Nm.n (x7 y) = { - . y
0 otherwise,
I, x>k,
M (%) = { . —
0; x<<k, my(x) =1.

Obviously nm,n(X, ¥) = nm&X)nn(y) then (see Section 3) Nm,n®;s ¥) = nm&) * nn@). Itis easily verified that
N (%) # N, (%) = Nontm, (X), 9)
and therefore
Nyaon (%5 Y) * Nimyomy (X, ¥) = Ntme,ntn, (%5 Y)-
moreover,
(14 0) 1y () = my (%) + om, (1) = 1, (%) + Ay (%) = m, (14 %)
But nyx +1) =1,x=0,1,2,..., and therefore

1
N, (x) = e (10)

By using (9) it is found that nm (x) = nlin(x) and consequently

= g
Similarly,
_ 1
N () = 0o
and consequently
N (52 6) = 1

(4o (1+ 7"

Let us consider the double series

f v, w) ; 1 11
<1*o)(1+r>22<1+—o>:(1u+rw ELHV’W[((I—FG)V <1+o>v+l)<(1+r>u <1+r)u+lﬂ

V=0 u=0

g
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2 f(V M) "']v W& n— MNot1 g x5 gy —my 0 (5 y) + Mottt (xv !/)] = f(x, y).

y=0

i [\48

Thus

oo

Y f(V ) (11)
Flo ) = iy i Z S iFopror 9

=0 u=0

A number of formulas will now be obtained which are analogs of the corresponding formulas of the
operational calculus in two variables [3]. '

1, Let
0, x+#y,

T 8) = {f(x) =g,

where {(x) is a given function of an integer argument, Then

©

= ot ‘ F(v) _ ot ?1 f)
T =100 = gty = V (0P (b Irotitor & (Itotrton '

or by setting

. 6 o\ W
f(o)—' I+()' V=G(14—0‘)V y
it is found that
ot 0, x+#y,
o (12)
Pl LS AR PV

In particular, for f(x) = 1 one obtains from (12)

ot #{O,J«:#y}_(5 (13)
= = 8,

o+ t+4+ ot 1, x=y

2. Let m = min(x, y) and £(x) be a given function., We set f(x, y) = f(m). One obtains

o Mmoo
rem) (14 o) (H~r){22 (14 0V (14 1*

1 N f ) _ d . F(w
X 2 (14 o)¥ (1+ 7 }“<1+o> <1+r>{§0 (14 o) (14 7)»

fw j) __o+ttor )
+§;) o(I+ o (14 1)H +v§_]0 t(l+ oV (1+ 7)Y } I4+04+ 1407 ‘VZ:O (I+0-4+1+on)v

co

By setting

Fa_ 0 N[O
[ (o) = s §(1+G)v ,
one obtains

o+ 7+ o1) = (m).
3. Let f(x, y) =f(x +y). Then

L fo+m R S
Fletg) = (H-G)(H—r) 22 (140 (1+ o (1+c) (1 Zi() E (I+ o)y (1+ ¥

=0 p=0 Vpe={

ot - 1 N i )
=— ;} J{U] [ (1= o) ! (1 +T)z+1]

By setting
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o N\ _I®)
f()ﬂ1+02(+0)v,

v=0
one finds that

T @ =770 _fry 4.
66—t '
Further two functional relations will be given which may prove useful in obtaining the operators,
) =1x, ¥), 8(o, T) = g, y); then [see (11)]

(140 (141 = 1
= T, e )(1+r> 22 e HXf(n—p, —a) g 9.

p=00g=0

g, v =

Hence it follows that

1 1 - - 5 ¥
(_jr_g();(j_r) fo, g, n= Y 21‘(&——1% y—q) gp, 9).

p=0 =0
One can establish in a similar manner that
x—1 y—1
fo, 9260, 9 _ |3 Y fe—v—Ly—1—wel w, #>1Ly>1,
o1 T ) v=0 u=0
0 otherwise.

By setting f(x, y) = (1 + o)* and f(x, y) = (1 + B)Y in the formulas (5)~(6) one finds

= (1 Y,
B 1+ B

= 1+,

o—aQ

By differentiating the above relations with respect to o and 8 respectively one obtains

= g,
©—ayt B

()
=L (14 g
n!

By setting f(x) = A%/x! in (11) one obtains

— 7» Ax
For= 55 o 3s) = 4
Hence it follows that
ot exp (__ A T )= Ay e
(I4-0) (14 1) I+ 1+7 x y!

If one assumes that the integrals are convergent one obtains from (14)

M BT\ on, wdd =——— Mpee Mt D (O, w) didp.
<1+o)<1+r>H ( i+o 1+) (. 1) dhop jj : (b, 1) dhdy

If one sets &(2, u) = &(A, #) in (15) then the left-hand side of the equality becomes

I et s
Tro e ) O 2V wriral @

and the right-hand side becomes
xty

2 Saz Ky 2VE)O @ 8,
0

xty!
and in both cases use has been made of the equality

j'x“’—‘.eXP (—vx~£)dx= (5) Ks(2VBy).

X

1282

Let f(o,

(14)

(15)



Thus,

o — @ xty

ot [0} K [2 _ otg ]d :_l_jv(D 2 K_ (2 = de 16
'(1+a)(1+1)§ © % iFaara) aa )OO - (2VE) dt 1e)
or
r sty
‘S.(D I:(l+0)(1+1) t] (2Vt Z___S 2 x_y(2Vg) de
oT

0

The formulas (15) and (16) can be employed to construct the tables of the values of the operators f(o, 7).
Of course,

[
EY (_1)" §" 1 (*—1)“ g x(")
o (-2)-R SR '

Bearing in mind that x is an integer and that x(®) = 0 for n > x one obtains
o (—) =L, 1)

and in a similar manner

exp (— 1) =100,

where L, (¢) is the Laguerre polynomial of degree x. It is known [4] that these polynomials form an ortho-
normal system on the interval (0, «) with weight e~§, This property of‘the polynomials follows directly
from the formula (13). Indeed,

[ronocte= o (-t-tog)a (b=

o+1+ 07 L x=y.
b 0

Note, Here it is necessary to use the property (3) of the product in the ring S, From (17) one has

0” (———~—) F(E, ) didn = F(; {—)

0

In the above

F(p, 9= [ [ F(& e " dedn.
00

By using the available tables for the two-dimensional Laplace transformation one can find the operator F(1/ ¢,
1/ 1), namely

o aa
Fl=, 2=l oL , ) dEdn. (18)
(c T) 0” (B L, @) F(& ) dzdn

0

It is not difficult to establish that

L exp (—— —5) ~Li@® — e (— —2—) — L3 ()

() g

(oL®ereta_ | L ) L (—Epetape DO (0 ety
gL(E)Ly(g)ge 5 aYO" exp( gl exp < Eedg (6 v+ o)t I‘(H—r)x(’),x:y.

The equality (18) now becomes

TS

11 (1IN (s
- _F(?,_ T):”Lx@ Ly () £ (& n) didn.

0
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Another method for finding the value of f(¢, ) consists in what follows. Let, as usual, | £| denote the inte~
gral part of a number £ If [¢] = v and | n| =y then

FAEL M) =Ff(, ) for v<E<v+I, p<n<<p+1L

We shall now find the Laplace — Carson transformation for the function f([£], [n]). One obtains

« w o vl u-Hl
Fp,9=pg | F&, ) e dedn=pg ¥ 3 fv, w) | | e " didy
o b : i

v=0 U=0 v

= (er — 1) (¢ —1) i i Fv, p) e PO et

v=0 u=0
Buf [see (10)}
1

147’

P =1, (x)= 1—_&—; el=mn, () = (19)

therefore

_feem =T(s, 1)

oT SRS
Fip, 9= i+0 (+7 ;;ﬂ 4oy (1+7)*

The latter formula enables one to find the operators f(¢, T) by using the table of the two-dimensional Laplace
transformation and the equalities (19). Let us consider another example., Let
E —_
5 (+0—y 3o
0/ 2+ 0y 21

One obtains

S - (+o—V (=Y 2 ot
PEUIEELDY V2o vV a1 (Y or sV 21" (V2toy2—1)(yV2Z+7y2-1)

i=0 k=0

% 1 _ ot :{1, x=1y,

1— (1+o—v2)(14+1—V2) e+ rttor 0, x=y.
(Vetoy2—1) (V2—vV2-1)

Therefore if one takes as a scalar product

(b @ b ®) =3 b2,
i=0

then the system of polynomials I(¢), I4(£)s . » . » In(£) i8 an orthonormal system. We shall now find an
explicit expression for In(£). One has

k3
02%(6 +1—y 2 )

L (5=
2%(6+1-;_¥_§)5+‘
but
1 5 1 : 1 \&
— 1— —— — ey —— 1’/2_'_:
o41—y2 Y3 (V /2) |- V? °__
L N I— —— '2'( 1— _)
o1 vy o+1 s g+ 5 Y2 o+ 73
Consequently,
Y
1 : (T/T °
L® = = 3 0t e
2 s k (0—}—1—————)
Ve
but
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o x® -
o a PO
and therefore
o x® 1 \#*
‘ e )
(0‘+1— -——1_)H1 R ( V2
147
Thus
3
1 O g\ x® 1 Vv
l = = —lh —— E——
=9 2 L( ) (k) R (V”z)
k=0
or
e RN
L(E) =2 2 e 50 2P
- @) Y s
B0

It follows from the above that the polynomials [5, 6]
n—l—l n

: ®
w@=2 T Y 0 )5
satisfy the relation

Y 4,0 1o ()2 - o

pard 0, m=n.

In conclusion, a generalization is given of a formula encountered in the summation of series [7] for
the case of a function of two variables, It will now be proved that

b33 =1 ( +m I ( l)rz-l-m
v . nAm x] nAM
Vi w == ,_,E 2,,%2 ATAT £ (0, 0) — (—1) 22 i M1, 0]
v=0 u=0 n=0 m=0 =0 m=0
e - . ]yrtm .
(—UMZZ(WLM nA F10, 9+ (D) H”VZ 2n+m+2 " AmAr s, g). (20)
n=0 m==0 n=0 m=0

The corresponding formula in the case of a single variable is
[+—1] o«

—1)"An, 1
Y p iy = 3 VIO e $ED ey 1)
k=0 n=0 n=0
The above formula follows from the formula (see [8])
[—1]
——f[t]*gt]~2ft—l——k]g(k), 31, r=er—1. 22)

k=0

By setting g[t] = (.._1)[13] =r/(r + 2) one obtains
i 1
— [t fl=— [t
P T8 = glt] Fi2 14

and consequently
1 [#—1] [+—=1] {t—11
5 f= Y fe—1—k e 2 DT ) = D Y F ) (-1

k=0 k=0

From the latter relation the equality (21) follows together with the formula

r—l—2 ‘7 (2n+1 [Anf 1] — (1) A7f (0)

I‘L—-—O

Using (21) in the variable y one obtains
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By applying the same formula to the variable x and the function
[y—11

O = Y 7lx pl(=DH,

n=0
one obtains
[x—11 [y~-1] L [y—1]
Vi weyrew=Y T ZfOWAW —omy £
v=0 p=0 n=0 n=0

(=" Ay flx, 0] D™ AL f [x, 0 (—1D)"AY Flx, 4]
Xfx ul (— Z 1) = [y]Z ) 2:”1 .

[gy—11
L W e R
=0
[g—1]

The required formula (20) is obtained by replacing in the right~hand side of the above equation the sums

by using the formula (22).
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